Die Verfeinerung der Kristallstruktur von Li₂Ge₂O₅

Von

H. Völlenkle und A. Wittmann

Aus den Instituten für physikalische Chemie der Universität und der Technischen Hochschule Wien

Mit 1 Abbildung

(Eingegangen am 28. August 1967)

Die Kristallstruktur von ${\rm Li_2Ge_2O_5}$ wird durch Fourierund Differenz-Fourier-Synthesen verfeinert. Als mittlere Atomabstände werden gefunden: Ge—O = 1,71 und Li—O = 1,96 Å.

The crystal structure of $\text{Li}_2\text{Ge}_2\text{O}_5$ has been refined by *Fourier* and difference syntheses. The average atomic distances are found to be: $\text{Ge}_-\text{O} = 1.71$ and $\text{Li}_-\text{O} = 1.96$ Å.

In einer früheren Arbeit wurde erstmals über die Existenz eines Lithiumdigermanats berichtet¹. Die Isotypie dieser Verbindung mit dem entsprechenden Lithiumdisilicat konnte einwandfrei durch eine Strukturfaktorrechnung unter Verwendung der für Li₂Si₂O₅ vorgeschlagenen Atomparameter² nachgewiesen werden.

Im Hinblick auf mögliche Unterschiede in den Atomparametern zwischen Silicat und Germanat wurde mit den aus Einkristallaufnahmen ermittelten Strukturamplituden¹ eine Verfeinerung der Kristallstruktur von $\text{Li}_2\text{Ge}_2\text{O}_5$ durchgeführt. Ausgehend von den Atomparametern des Disilicats wurden Fourier- und Differenz-Fourier-Synthesen für die (100)- und (001)-Ebene gerechnet (Abb. 1). Die Synthesen ergeben wiederum eine geringe Verlagerung des Sauerstoffatoms O_1 , so daß sich die Symmetrie $\text{C}_{2\text{V}}^{13}$ —Ccc2 auf C_{S}^4 —Cc erniedrigt. Auf diese Tatsache wurde bereits von Liebau² beim Lithiumdisilicat hingewiesen. In Tab. 1 sind die aus den Synthesen erhaltenen Atomparameter zusammengestellt; Tab. 2

¹ E. Modern und A. Wittmann, Mh. Chem. **96**, 1783 (1965).

² F. Liebau, Acta cryst. [Kopenhagen] 14, 389 (1961).

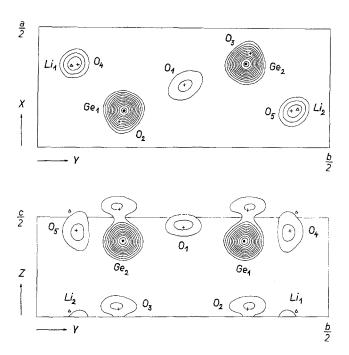


Abb. 1. Elektronendichteprojektion für ${\rm Li_2Ge_2O_5}$ auf die (xy)- und (yz)- Ebene. Die Höhenschichtlinien entsprechen Intervallen von $8e/{\rm \AA^2}$, beginnend mit $8e/{\rm \AA^2}$

Tabelle 1. Atomparameter und Temperaturkoeffizienten $(B_{\rm Li,O}=0.5;\ B_{\rm Ge}=0.3)$ für ${\rm Li_2Ge_2O_5}.$ Raumgruppe ${\rm C_s^4}$ — Cc

Atom	x	y	z		
Li ₁	0,340	0,0560	0,525		
${ m Li}_2$	0,660	0,0560	0,025		
Ge_1	0,158	0,1470	0,880		
$G_{\mathbf{e_2}}$	0,845	0,1470	0,380		
O_1	0,264	0,2500	0,950		
O_2	0,100	0,1400	0,537		
O_3	0,900	0,1400	0,037		
O_4	0,343	0,0665	0,933		
O_5	0,657	0,0665	0,433		

enthält eine Gegenüberstellung der beobachteten und berechneten Strukturamplituden, woraus sich für die beobachteten Intensitäten ein R-Wert von 0,078 ergibt. Bemerkenswert ist, daß die Atomparameter des Digermanats gegenüber jenen des Disilicats nur leicht geändert sind,

während bei anderen isotypen Verbindungen — z. B. GeO_2 und SiO_2 (beide Quarzform) oder Li_2GeO_3 und Li_2SiO_3 ³ — charakteristische Unterschiede bezüglich des X—O—X-Winkels auftreten.

Tabelle 2. Beobachtete und berechnete Strukturamplituden für $\operatorname{Li}_2\operatorname{Ge}_2\operatorname{O}_5$

														
h	k	l	$ F_0 $	$ F_c $	h	k	l	$ F_0 $	$ F_c $	h	k	l	$ F_0 $	$ F_c $
0	2	0	45	56	0	4	6	101	96	3	15	0		12
0	4	0	210	214	0	6	6	81	83	3	17	0	107	112
0	6	0	92	113	1	1	0	77	71	4	0	0	132	155
0	8	0	86	75	1	3	0	184	173	4	2	0		5
0	10	0	234	228	1	5	0		8	4	4	0	135	126
0	12	0		18	1	7	0	146	161	4	6	0	82	85
0	14	0	154	144	1	9	0		25	4	8	0		24
0	16	0	-	44	1	11	0	76	73	4	10	0	97	108
0	18	0	73	64	1	13	0	66	68	4	12	0		4
0	0	2	271	248	1	15	0		16	4	14	0	92	96
0	2	2	44	45	1	17	0	64	77	4	16	0		37
0	4	2	136	136	2	0	0	132	111	5	1	0		3
0	6	2	94	98	2	2	0	29	27	5	3	0		6
0	8	2	47	50	2	4	0	39	29	5	5	0		5
0	10	2	141	162	2	6	0		16	5	7	0		7
0	12	2		30	2	8	0		21	5	9	0		5
0	14	2	118	110	2	10	0	76	72	5	11	0		3
0	16	2	56	58	2	12	0		18	5	13	0		9
0	18	2	48	48	2	14	0		34	6	0	0	136	110
0	0	4	122	125	2	16	0		12	6	2	0		6
0	2	4	-	37	2	18	0		18	6	4	0	98	84
0	4	4	110	112	3	1	0	77	72	6	6	0	69	64
0	6	4	95	100	3	3	0	212	193	6	8	0		9
0	8	4	50	47	3	5	0		1	6	10	0	82	87
0	10	4	98	101	3	7	0	194	195	7	1	0	_	34
0	12	4		24	3	9	0		39	7	3	0	82	82
0	14	4	65	84	3	11	0	92	89	7	5	0		1
0	0	6	110	102	3	13	0	88	99	7	7	0	79	87
0	2	6		24										

Diese Übereinstimmung in den Atomparametern von $\text{Li}_2\text{Si}_2\text{O}_5$ und $\text{Li}_2\text{Ge}_2\text{O}_5$ kann aus der geringeren Flexibilität der $[X_2\text{O}_5]^{2-}$ -Schichten erklärt werden. In diesem Zusammenhang sei auf die im Schnitt $\text{Li}_2\text{Ge}_2\text{O}_5$ — $\text{Li}_2\text{Si}_2\text{O}_5$ auftretende quasiternäre Verbindung $\text{Li}_2(\text{Si}_{0,25}\text{Ge}_{0,75})_2\text{O}_5$ verwiesen 4, in welcher durch die Auflösung der schichtförmigen Bauelemente zu Doppelketten eine größere Beweglichkeit der Tetraedergruppen und damit auch die Ausbildung kleinerer X—O—X-Winkel ermöglicht wird.

³ H. Völlenkle und A. Wittmann, Mh. Chem. 99, 244 (1968).

⁴ H. Völlenkle, A. Wittmann und H. Nowotny, Z. Kristallogr., im Druck.

Tabelle 3. Interatomare Abstände und Winkel für Li₂Ge₂O₅

Der Mittelwert beträgt für Li₂(Si_{0,25}Ge_{0,75})₂O₅ 130° gegenüber 137° für Li₂Si₂O₅ und Li₂Ge₂O₅. Tab. 3 gibt die berechneten interatomaren Abstände und Winkel wieder. Der Mittelwert der Ge—O-Abstände ist mit 1,71 Å etwas kleiner als bei anderen Germanaten (1,74—1,75 Å).

Herrn Prof. Dr. H. Nowotny, Wien, danken wir aufrichtig für die Förderung dieser Arbeit. Die Rechenarbeiten wurden mit der IBM 7040-Rechenanlage des Institutes für numerische Mathematik der Technischen Hochschule Wien durchgeführt, wofür wir Herrn Prof. Dr. H. Stetter bestens danken.

Ferner sind wir der Firma Owens, Illinois, für die gewährte Unterstützung zu Dank verpflichtet.